The sacroiliac joints are subject to considerable stresses in weight-bearing and back-twisting movements. Trauma to the SI ligaments can occur with falls on the buttocks, car accidents, twisting and lifting injuries, and repetitive impact loading from excessive running (marathoners). Predisposing factors include hypermobile joint syndromes (such as Ehlers-Danlos syndrome; see Figure 1) and pregnancy resulting in hormonally induced laxity (relaxin). With an injury to the SI joint, pain tends to be unilateral and can refer to the posterior thigh, iliac fossa and buttocks. Sprains of the iliolumbar ligaments can also result in referred pain into the groin and genitalia. Non-traumatic causes of SI joint pain also include seronegative arthritides such as ankylosing spondylitis, reiter’s syndrome, and psoriatic arthritis.

SI joint ligament instability pain is aggravated with prolonged immobility—e.g., pain from the “cocktail party”-prolonged standing; “theatre”-prolonged sitting. Pain is often worse with turning in bed, getting out of bed, standing up from a seated position or stepping up with the affected leg. Clinical signs include contranutation (anterior torsion of the ilium relative to the sacrum) as reflected by the anterior superior iliac spine (ASIS) being lower and the posterior superior iliac spine (PSIS) being higher. Nutation is the opposite (as when doing the “pelvic tilt”). Provocative tests can be done supine (gapping test, femoral shear test, Laguere’s sign, Gaenslen’s test); prone (sacral apex pressure test, yeoman’s test, posterior iliac glide test); sitting (piedallu sign, supine-to-sit test); and standing (gillet’s knee-to-chest test). Clinical exam for diagnosis is, however, quite unreliable.1,2

A new scale to diagnose SI joint instability that responds to prolotherapy has been recently co-developed by the author and is undergoing validity/reliability testing (Whitmore-Gordons Sacroiliac Instability Tool; see Appendix A). SI joint dysfunction diagnosed by intra-articular blocks accounts for about 20% of chronic low back pain.3,4 Treatment options for SI joint pain include medication (anti-inflammatories, analgesics, cortisone injections), physiotherapy, psychological counseling, surgery (radiofrequency denervation, surgical fusion), cortisone and botulinum toxin-A injections, and prolotherapy.5 Prolotherapy injections with Platelet-rich Plasma (PRP) is a relatively new treatment. This paper documents its effective application in patients with SI joint ligament laxity and painful dysfunction.

Physiology

The sacroiliac (SI) joints connect the large wedge-shaped sacrum (comprised of five fused sacral vertebrae) to the fan-shaped ilia bilaterally. The SI joints are part synovial and part syndesmosis. The latter is a fibrous joint in which the intervening connective tissue forms an interosseous ligament. The synovial part is C-shaped with the convex ilium surface facing anteriorly and inferiorly. The articular surface of this ilium part is covered with fibrocartilage whereas that of the sacral part, hyaline cartilage. The angulation, shape and roughness of these articular surfaces vary greatly. In children, the surfaces are smooth. In adults, the surfaces become irregular with depressions and elevations that fit into one another. By doing so, movement is restricted, enhancing the stability of these joints in transferring weight from the
Figure 1: Signs of Ehlers-Danlos Syndrome. Figures 1a and 1b demonstrate hyper-mobile joints, and figure 1c demonstrates elastic skin.

lower limb to the spine. One analogy is that the sacrum works as a universal link in a transmission. Another describes it as a keystone in an architectural arch. The SI joints and symphysis pubis have no muscles that control their movements directly. The force closure mechanism that stabilizes the SI joints however is enhanced by the lumbodorsal fascia forming a mechanical link between the gluteus maximus muscle on one side and the latissimus dorsi muscle on the other side.7

It used to be thought (and sometimes is still taught) that there is no movement in the sacroiliac joints. Over 100 years ago, clinical observations documented SI joint movement in pregnant women with low back pain.8 Subsequent in-vivo studies using implanted metal markers and stereoradiography have shown small movements in normal individuals in prone hyperextension (2 degrees of backward rotation of the sacrum relative to the ileum; 0.2 degrees of inward rotation of the iliac crests; and translation gliding of 0.6mm between the sacrum and ilium).9 Movements were 30-40% smaller in men and tended to increase slightly with age. Larger angular rotations (6-8 degrees) and translations (2.5mm) were reported in one subject with recurrent SI problems.10 In-vitro cadaver studies using embedded lead spheres and CT scan analysis have also documented movement.11 Application of eccentric forces (up to 60% of body weight) to cadaver pelvises resulted in rotational and translation movement. Rotational movement was increased by 10% when the posterior or anterior ligaments were cut and by 30% when both were cut.11 Anteriorly, the symphysis pubis is a cartilaginous joint with an interpubic fibrocartilaginous disc between the two joint surfaces. The sacrococcygeal joint is another synphysis that is united by a fibrocartilaginous disc. Occasionally this joint is synovial and movable. With advanced age, this and the SI joint may fuse and become obliterated.

Prolotherapy Background

Prolotherapy is a medical procedure that involves the injection of proliferating agents such as 12.5% dextrose mixed with local anesthetic. The injections are directed into ligaments, particularly at their insertion into bone/joints. Stronger customized solutions to promote faster healing include P2G (phenol-glycerine-glucose), sodium morrhuate (cod liver oil extract) and a patient’s own blood (platelet enriched plasma). The goal of prolotherapy is to stimulate collagen formation and deposition. By doing so, ligaments are strengthened and joint stability is enhanced. Such strengthening has been supported by both animal and human studies.13,14

The first physician to report on prolotherapy was Earl Gedney, DO, in 1937, who reported on this type of joint-injection after using it successfully on his own thumb.15 At a later date, while performing a hernia operation, general surgeon George Hackett, MD, discovered by chance that injections given “(usually in error) at the junction of ligament and bone resulted in profuse proliferation of new tissue at this union.” He then spent the rest of his career developing and refining the injection techniques leading to the publication of his text Ligament and Tendon Relaxation Treated by Prolotherapy in 1956. He treated 543 chronic low back pain patients (ages 15 to 88 with pain duration of 4 to 56 years) and reported an 82% success rate with such patients considering themselves cured over periods ranging up to 12 years at follow-up. Subsequent supportive clinical studies include case series for chronic groin pain,17 whiplash,18 fibromyalgia19 and randomized controlled trials (RCTs) for knee osteoarthritis,20 finger-thumb osteoarthritis,21 and chronic low back pain.22,23 One two-year RCT for low back pain found improvement in both the active (dextrose) and placebo (saline) prolotherapy groups suggesting that even the needle itself has an effect.

Platelet-Rich Plasma Prolotherapy

Platelet-rich plasma prolotherapy (PRPP) involves the injections of autologous blood—in particular, the portion concentrated with platelets—back into the donor’s body at the site of concern.

In the PRP treatment, venous blood (up to 20-60 cc at one time) is taken out from the arm. It is then spun down over 14 minutes in a patented centrifuge (manufactured by Harvest Technologies, Inc.) that separates the blood into distinct layers. This centrifuge provides for a higher concentration of platelets (almost five times greater than that in normal blood).24 The platelet portion is found immediately above the white blood cells (leucocytes) in the buffy coat. This is withdrawn into a syringe, mixed with anti-coagulants, and then injected into tissues that require healing such as the sacroiliac ligaments in this case series. Local anesthetic is usually administered to the skin and subcutaneous tissues to minimize pain from the PRP procedure. Anesthetic is usually not mixed with the PRP solution since dilution of the platelets may reduce its effectiveness. Multiple injections are usually given over the injured area and repeated as needed over a period of time—depending on the severity of injury and healing response.

Blood consists of four components: plasma, red blood cells (RBC), white blood cells (WBC), and platelets. Plasma is the liquid medium in which the blood cells and platelets travel in. Plasma consists predominantly of water and contains...
various proteins such as albumin and fibrinogen. At 95%, RBCs consists of the majority of all cell matter in blood. They function as transporters to deliver oxygen to cells, and remove the expelled carbon dioxide. WBCs act as the body’s immune system: they defend against pathogens and foreign matter and consume waste matter in the blood. WBCs compose a mere 1% of cell matter in blood. Platelets make up the remaining 6% of blood. These small but extremely versatile cell fragments are responsible for clotting, hemostasis, revascularization, and connective tissue repair. Connective tissue repair is the platelet function that PRP operates on.

PRPP Mechanism of Action
PRPP operates on a very simple principle: platelet concentrations, when increased in a specific area, stimulate rapid healing. Normal blood contains approximately 200,000 platelets/mcL. In PRPP injections, platelet concentrations can be as high as 1 million platelets/mcL. The platelet-RBC ratio is essentially reversed, with 94% of the cell matter being platelets and 5% being RBC.

Platelets contain many different structures, including glycogen, lysosomes, alpha and beta granules. The main focus of PRPP is on the alpha granules, as these structures house all of the growth factors essential to PRPP in inactivated forms. These growth factors include: transforming growth factor beta (TGFβ), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), and epithelial growth factor (EGF). TGFβ acts during inflammation to help regulate cell migration and replication. VEGF is released after the inflammatory phase and stimulates angiogenesis, as well as accelerates tendon cell and type 1 collagen synthesis. PDGF is responsible for promoting mesenchymal stem cell, osteoid, and endothelial reproduction, as well as collagen synthesis. EGF functions to produce basal skin cells and mucosal membranes, as well as inducing cell migration and replication. Other notable proteins found in PRP are vitronectin, fibronectin, and fibrin, all of which function as cell adhesion molecules. Platelets also contain dense granules which contain factors (ADP, calcium, serotonin) that promote platelet aggregation.

Alpha granules must degranulate in order to release their contents and begin the healing cascade of collagen restoration and growth. Degranulation and growth factor secretion are initiated by the clotting function of platelets. Growth factor secretions occur within ten minutes after coagulation, and more than 95% of the growth factors can be released within one hour. Therefore anticoagulants such as citrate solutions are mixed with PRP blood in order to prevent premature coagulation.

After granular release, the growth factors are activated via the attachment of various histones and carbohydrate side chains. The activated growth factors are transported to the cell membrane for cellular export and paracrine signaling. These growth factors then bind to the surface receptors on the plasma membranes of their target cells. Some examples of these target cells include: mesenchymal stem cells, osteoblasts, fibroblast, endothelial cells, and epidermal cells. The growth factor-receptor complex then signals for internal cellular proteins to activate specific gene sequences that allow for functions such as: cellular reproduction, matrix formation, osteoid production, collagen synthesis, etc. PRPP treatments are ideally performed immediately after centrifugation to maximize the efficacy of growth factor usage.

Normal blood contains approximately 200,000 platelets/mcL. In PRPP injections, platelet concentrations can be as high as 1 million platelets/mcL. The platelet-RBC ratio is essentially reversed, with 94% of the cell matter being platelets and 5% being RBC.

PRPP Mechanism of Action

Platelets

Risks

As with all injection procedures, there is a remote chance of local anesthetic allergy and toxicity, risk of infection, neural and organ trauma, and needle breakage. These can all be minimized with established standard operating procedures in sterility and operator technique.

Impediments to Collagen Synthesis and Tendon-Ligament Healing

Prior to PRPP or if there is no response after therapy, it is important to screen for and correct for conditions that could impair healing. These include:

- **Nutritional deficiencies**
 - Iron studies, serum zinc, serum vitamin C; with neuropathic pain, screen also for 25(OH) vitamin D3, serum B12, RBC folate, omega-3 fatty acid profile
- **Hormonal deficiencies**
 - TSH (hypothyroidism), DHEA-S/cortisol (a.m.), cortisol (adrenal fatigue), free testosterone (hypogonadism), IGF-1 (adult growth hormone deficiency syndrome), FBS and A1C (diabetes)
- **Inflammatory disorders**

Safety

Since PRPP uses autologous blood, any chances of immunogenic reactions or disease transfer that may occur from the usage of non-autologous blood are negated. Acting growth factors attach to cell surfaces rather than the nucleus, essentially eliminating the chance of tumor formation through the use of negative feedback control.

Contraindications

The following list presents contraindications to the use of PRP:

- Low platelet count (< 105/μL)
- Low hemoglobin (< 10 g/dL)
- Low blood pressure; hemodynamic instability
- Dysfunctional platelets and clotting (hemophilic)
- Consistent use of NSAIDs (anti-inflammatory drugs) within 48 hours of PRP procedure
- Corticosteroid injection at treatment site within two weeks of PRP procedure
- Corticosteroid by mouth or i.v. within two weeks of PRP
- Concurrent or recent fever or illness
- Septicemia (generalized blood infection)
- Active infections
- Active cancer—especially hematopoietic or of bone
- Rash at injection site.
of the Achilles tendon after complete tearing of the tendon. Half of the patients received surgery in a growth factor rich preparation (GFRP), while the remaining six patients underwent conventional surgery. The results of the surgeries were based on: range of motion, functional recovery, and complications. The six athletes with exposure to the GFRP were able to recover their range of motion in 5-9 weeks, while it took 8-14 weeks for the patients of the control group to do the same. The experiment group patients were also able to take up gentle running sooner, and the cross sectional area of the recovered tendon was less than that of the control group.32 An earlier rat Achilles tendon transsection study demonstrated that mechanical stimulation was a prerequisite for platelets to work by day 14 and that both activity and platelets increased repair independently of each other.33 This also may provide some rationale for the lack of a significant difference after 24 weeks between PRP- (27 subjects) and saline-injected (27 subjects) Achilles tendinopathy subjects in a recently published RCT. Of significance was that both groups received eccentric exercises and both significantly improved.34 This confounding variable of exercise was also similarly seen in the earlier referenced Yelland dextrose prolotherapy study.

Plantar Fasciitis. Barrett et al performed a study in which nine patients with thickened plantar fascia were treated with 3 cc of autologous platelet concentrate (APC+) injections. The patients were then subjected to a lower leg brace for two days and monitored regularly for a year. Results of the study—obtained through ultrasound readings—indicated that the bands of the plantar fascia significantly decreased in thickness, signifying reduced swelling. Of the nine patients in the study, six patients fully recovered from all symptoms at two months, one patient recovered after dropping out of the experiment (due to corticosteroid usage), one showed improvement after a few more injections of APC+, and the last patient still felt pain during walking. From the study, it can be concluded that the success rate of the experiment was 77.8% (7 of 9 patients).35

Anterior Cruciate Ligament (ACL). Ventura et al performed a study to test the efficacy of growth factors on ACL surgery recovery. Twenty patients with laxity due to torn ACL underwent surgery using autologous hamstring tendons. The patients were divided into one of two groups: growth factor-treated and control. The experimental group was treated with growth factors similar to the ones obtained from PRP. Results after six months indicated that the patients in the experiment group reported denser ACLs after recovery. One patient had a synovitic reaction, with hypertrophic tissue.36 This was further supported by a canine ACL study showing that ACL defects treated with platelets had a 40% increase in strength at six weeks vs. 14% for those untreated with platelets.37 Other arthroscopic-enhanced repairs include articular cartilage avulsion38 and foot-ankle surgeries.39 Its use in enhancing bone repair remains controversial (PRP possibly inhibits osteogenic action of bone morphogenetic proteins).40

PRP in Combination With Prolotherapy

The combination of platelet rich plasma with prolotherapy has been demonstrated to have an improved outcome on the overall healing process both in this and previous case studies.41 A pictorial illustration of the overall PRP prolotherapy procedure in the outpatient environment is presented in Figure 2. Typical injection sites are illustrated in Figure 3 (page 64) and methods for guiding injections are presented in Figures 4 and 5 (page 65).

This article focuses on five case studies in which PRP prolotherapy treatment successfully improved the patients’ joint pain conditions.

Case Studies

Case 1

A 45-year-old former registered nurse, mother of three with pre-existing Ehlers-Danlos syndrome (see Figure 1) and anterior L3-S1 spinal fusion for scoliosis (at age 19) developed new onset left-sided low back pain following a car accident on April 20, 2007. She fell out of her wheelchair van after it had caught fire. She landed hard on her left hip and also hyper-extended her neck. She was seen

Platelet-Rich Plasma Efficacy

There is an extensive history in the use of PRP dating back to 1987 for cardiac surgery.29 Since then, PRP has also been used by other specialists in dentistry, ENT (maxillofacial and periodontal), cosmetics, and burn surgery. PRP has been used over the past ten years in the musculoskeletal field, with publications by orthopedic surgeons—including randomized clinical trials in repairing:

- **Tennis elbow**
- **Achilles tendon**
- **Plantar fasciitis**
- **Anterior cruciate ligament (ACL)**
- **Rotator cuff**
- **Lower back pain**

Tennis Elbow. Mishra et al performed a study involving 140 patients afflicted with chronic elbow epicondylar pain. These patients were first subjected to a standard physical therapy treatment and other nonsurgical treatments. Twenty of these patients continued to have pain and were acclaimed candidates for PRP. Fifteen patients underwent PRP while the other five underwent a standard bupivacaine injection (control). Eight weeks after the treatment, results indicated that the PRP patients noted a 60% improvement in visual analog scores (VAS) in pain scores, while the control patients only noted 16%. After six months, PRP patients noted an 81% improvement, and 93% during the final follow-up at 12-38 months. However, three of the five control patients opted out of the experiment to seek other means of treatment after eight weeks, and thus limited the statistical outcome of the study.30 More recently, a larger randomized controlled trial compared PRP (51 patients) to corticosteroid injections (49 patients). The primary outcome measure was a 25% reduction in VAS pain or DASH (Disabilities of the Arm, Shoulder, Hand) score without need for a re-intervention after one year. 73% of the PRP vs 49% of the corticosteroid patients were successful (p < 0.001). The corticosteroid group was better initially and then declined, whereas the PRP group progressively improved.31

Achilles Tendon. This study, conducted by Sanchez et al, consists of 12 athletes who underwent open suture repair

ESR, CRP, CK, seronegative disease and immunological work-up (as indicated based on the clinical examination).
Practical PAIN MANAGEMENT, September 2010

FIGURE 2. PRP Prolotherapy Procedure

A. A butterfly needle is inserted into the antecubital vein.

B. 60 cc of venous blood is withdrawn (typically takes 2 staff to be able to do this easily).

C. The blood is inserted into the patent-pending Harvest centrifuge system and spun for 14 minutes.

D. The platelet-poor portion (clear) is removed and then the buffy coat layer (containing concentrated platelets and red and white blood cells) is syringed out.

E. The left syringe has platelet-poor plasma. This contains higher levels of IGF-1 and has use for injections into muscle trigger points and bathing chronically inflamed tendons. The right syringe has platelet-rich plasma and is used for prolotherapy into areas of ligament instability and partial tears.

F. Injections are done after freezing the skin with hydroxide-buffered lidocaine and after deeper injections with a local anesthetic, which itself has some proliferative effect. Full aseptic technique, including chlorhexidine, betadine and alcohol, is used.

by an orthopedic surgeon for an insurance exam and was told there was no treatment available. X-rays were negative for any fracture. MRI revealed some bony sclerosis in both SI joints. Blood work done in July 2008 revealed mildly elevated ESR 29mm/h but the rheumatoid factor, ANA and HLA-B27 tests were all negative. CBC was normal with a platelet count of 278 xE9/ L (normal is 150-400).

She attended physiotherapy and was noted to have a markedly unstable left sacroiliac joint. Even passive movement of the left leg would provoke a marked audible subluxation of the joint. She was unable to sit. When seen on Oct. 16, 2008, her numerical rating scale for pain (NRS) was 6-7/10, varying from a best of 6 to a worse of 9.5/10; average night time pain was 8/10; short-form McGill Pain Questionnaire (SFM) score was 34/45; and the Oswestry Low Back Pain and Disability score was 46/50. She described associated burning pain with electric shocks, fatigue 8/10, anxiety 7/10, and decreased concentration 8/10. She had short-term relief with tramacet, advil (anaphylactic allergies to oxycodone, codeine), acupuncture, heat, and TENS. She could not sit for prolonged periods in her wheelchair and required help with dressing, cleaning, transferring, bathing, meal preparation and household chores. As she had trouble lying on her left side, she developed pressure sores in the right sacral area.

Past health included Gilbert’s syndrome, previous cholecystectomy and three C-sections. She was a non-smoker and rarely drank alcohol. Family history include Ehlers-Danlos in her three children of which one had severe vascular involvement with dilated aorta. Both parents with diabetes, hypertension; father also with rheumatoid disease; mother with breast cancer; and brother with fibromyalgia. Her physical exam revealed a reported height of 6’1” and weight of about 240 pounds, BP 124/99mm Hg. Pulse 95bpm. Signs of neuropathic pain in left leg, foot included vasomotor changes, colder skin temperature (Left big toe 23.1°C; Rt: 29.4°C) but without any brush allodynia. Only 4/18 fibromyalgia tender points on algometry. Whitmore-Gordons score of 42/60. Marked tenderness with grade 3 instability (no end feel) in both anterior-posterior and vertical stressing of the left SI joint. Secondary spasm noted of the adjacent piriformis muscle. Initial management with pregabalin helped with the left leg neuropathic pain. Naturopathic therapies (including four Myer’s cocktail i.v. infusions) helped with her energy and sleep.

As she also had a history of adverse reac-
of PRP into each of the SI ligament sites on July 7, 2009. Following this, she noted significant improvement in pain and resolution of the “clunking” sensations. By Dec. 3, 2009 her NRS back pain was down to 3/10. On March 25, 2010, her Oswestry score was down to 5/50, SFM score 0/45, and NRS 0/10. She was no longer wheelchair confined and happily reported that she was back to her pre-accident status.

Case 2
A 67-year-old married mother of four, a retired CEO of a pediatric hospital, was seen with chronic low back pain. She had a previous posterior lumbar fusion from L4-S1 in 1977. In February 2008, she injured her low back playing tennis. While running to the net, she did a back-hand swing and felt a “snap” sensation in her back. She had physiotherapy and acupuncture with temporary relief. The back pain prevented her from playing sports and interfered with her ability to walk and sit for long periods. When seen on Oct. 30, 2008, she described pain in the right low back and buttock with radiation down the lateral thigh, skipping the knee and then into the lateral calf. There was no numbness or paresthesia. NRS pain was 4/10 (varying from 2-6/10, average night pain 5/10); SFM 24.8/80; and Whitmore-Gordons score of 33/60.

Past health included chronic sinusitis. She was a non-smoker who drank alcohol occasionally. Family history included a daughter with non-Hodgkin’s lymphoma. She was a nonsmoker and non-drinker. Physical exam revealed height 5’4” weight 130lbs. BP 112/79mm Hg. 1+ tenderness over right sacroiliac joint and rock-climbing. She noted pain referral along the iliac crest and gluteus medius muscles (she knew her anatomy) along with a “popping” out feeling of her right sacroiliac joint. She was initially referred to a rheumatologist in September 2009 and underwent extensive bloodwork (including negative HLA-B27) and x-rays (normal spine, SI joints; mild OA right great toe MTP joint).

Case 3
A 29-year-old female single occupational therapist and avid dragon boat competitor developed gradual onset of right-sided low back pain. She was very physically active as a runner, and also participated in competitive basketball, hockey, and rock-climbing. She noted pain referral along the iliac crest and gluteus medius muscles (she knew her anatomy) along with a “popping” out feeling of her right sacroiliac joint. She was initially referred to a rheumatologist in September 2009 and underwent extensive bloodwork (including negative HLA-B27) and x-rays (normal spine, SI joints; mild OA right great toe MTP joint).

Past medical history includes inappropriate sinus tachycardia for which she takes Lopressor and cervical dysplasia. Family history includes father and grandparents with colon cancer. She was a non-smoker and non-drinker. Physical examination revealed a measured height of 5’4”/5”, weight 136 lbs. BP 125/85 mm Hg. Pulse 60bpm regular. Back examination revealed full flexion with normal Schober’s test and a Whitmore-Gordons score of 40/60. There was grade 3 instability of the right sacroiliac joint with spondylolisthesis of L4 on L5 > L5 on S1. Compensatory overuse of the glutes
FIGURE 4. Ultrasound-guided injections are done for deeper structures (such as the hip joint, psoas and piriformis muscles). This is shown with Sonosite Inc.’s Micromaxx portable unit here. Other agents may be incorporated such as Botulinum-Toxin A, analgesic Traumeel and intra-articular visco-supplements.

FIGURE 5. EMG guided injections (into muscle) can be done incorporating the handheld Myoguide portable unit that provides both visual and auditory feedback. It also allows for E-stim to accurately localize muscles, motor points and peripheral nerves.

maximum and medius was noted. Despite efforts with myofascial therapy, core strengthening, IMS acupuncture, use of a sacroiliac belt, her progress with rehabilitation plateaued. Her NRS pain was 7/10; SFMcGill 26/45; and Oswestry 32/50.

She underwent two series of PRPP injections directed into the right sacroiliac ligaments at Hackett’s A (1cc), B (4cc), C (5cc) and L4-5 and L5-S1 supra and interspinous ligaments (0.5cc each) and adjacent facets (0.5cc each) on Oct. 13 and Dec. 8, 2009. She estimates improving by 90% after her first treatment. The instability improved to a grade 1 rating. After the second treatment, she reported in March 2010, that her NRS pain was 0/10, SFMcGill 0/45 and Oswestry 0/50. She was back to full sports and successfully competed in a world cup dragon boat competition in China.

Case 4
A 40-year-old married mother of four, a floral arranger and bookkeeper, was seen on Jan. 16, 2006, with a three-year history of gradual onset chronic low back pain. Symptoms began with a burning sensation in the lateral hips after intercourse. Pain was severe enough that she was prescribed Vioxx. She had trouble walking and became almost bedridden. Besides Vioxx, she also had chiropractic manipulation and physiotherapy. Ice would help to numb her back pain. Tylenol #3 helped minimally. She eventually was treated with Hydromorph Contin. She tried acupuncture. She had a flare-up of pain after an anesthesiologist cortisone epidural injection. She also had 4-5 sessions of osteopathy and neural therapy injections. Past medical history included a school bus accident over 20 years ago with a concussion but no back injury. She did not smoke and only drank alcohol socially.

Physical examination revealed a height 5’3” weight 155 lbs. BP 119/85mm Hg. Pulse 84bpm. She had full lumbar flexion 90 with limited painful extension 12 (normal is 30). Side flexion Ll 14, Rt 18 (normal is 30). She had tenderness in the SI joints bilaterally, but stability was normal. There was accompanying neuropathic pain signs with brush allodynia, pinprick hyperalgesia with wind-up phenomena over the low back. Neural tension tests and neurologic exam of the legs were otherwise normal. Her NRS pain was 6-7/10 (best 3, worst 9, night 8-9/10); SFMcGill 36/45; feelings of anxiety, depression 5/10; fatigue 5/10; and Oswestry 34/50. Her alldynia was too severe for even topical rubs. This was controlled by first using a topical anesthetic spray (ketamine 10%, bupivicaine 0.75%). After 30 minutes, the topical gel (ketamine 10%, clonidine 0.2%, lidocaine 5% in lipoderm) could then be applied and was found to be helpful. With this, she was then able to undergo a series of marcaine injections (temporary relief), Botox injections q 3 months into the paraspinal muscles and piriformis muscles (helpful from March 9, 2006 to June 4, 2009). With this, she was able to wean off her hydro-morph contin and progress with her physiotherapy. She then started seeing a chiropractor for neck pain and with spinal manipulations three times a week and noted improvement in her neck pain but increased pain in her low back. She described clicking and clunking sensations in her left hip. Whitmore-Gordons score of 40/ 60. Further back examination revealed a ‘grade 2’ right SI joint instability and hypermobility in the L4 to S1 segments.

She underwent PRPP injections (July 21, 2009) at Hackett’s A point (1cc), B point (5cc), C point (5cc) and L5-S1 supra-interspinous ligaments (0.5cc) and facets (0.5cc each). She had increased pain for one week but then responded well to this with NRS down to 0-1/10 and overall report of 90% improvement. A repeat PRPP was done Sep. 15, 2009 with further improvement. She then unfortunately slipped and fell in late October, twisting her right ankle and re-injuring her low back. A third PRPP treatment was done on Jan. 12, 2010 with focus on the unstable left SI joint (grade 2) instability. In March 25, 2010, she reported that she still had residual pain in the left side with NRS 1/10; SFMcGill 5/45; and Oswestry 9/50. She was pleased to report, however, that her right side was completely pain-free. She continues to function at a high level, working full time and is off all her topical and oral pain medications.

Case 5
A 48-year-old former environmental industry executive and current fourth year naturopathic medicine student was seen on May 26, 2006 upon referral from a teaching hospital pain clinic anesthesiologist. She had a three year history of persistent chronic low back pain (localized to the left SI joint) following a fall on the left hip while rollerblading. Subsequent x-rays were negative for any fracture. CT and MRI scans revealed no sacroiliac joint pathology, but did show concentric disc bulges and facet osteoarthropathy at L3-4, L4-5, L5-S1. Grade 1 anterolisthesis noted at L4-5 and spondylosis at L5. Bone scan showed mild increased activity consistent with arthritic changes in the left side of the hip and pelvis. EMG studies were unremarkable. She underwent extensive sports medicine physiotherapy and had massage and chiropractic treatment. The use of low dose pregabalin (25mg bid) was
helpful in reducing pain including sciatica symptoms in the left leg. She took extensive herbals including Devil’s Claw, fish oil, turmeric, glucosamine chondroitin sulfate.

Past medical history included previous mild scoliosis documented at the T3 level, premenstrual syndrome, and fractures of the left first and second toes. She was a non-smoker, drank alcohol occasionally and ate a mostly vegetarian diet. Her NRS pain 7/10; SFMcGill 23/45; and Oswestry 36/50. Pain was in the midline lower lumbar and parasacral region with radiation into both groins and down the left lateral thigh. Sitting and standing tolerance was limited to 5 to 15 minutes. Physical exam revealed a height of 5’1” and weight 148 lbs. BP 101/67mm Hg. Pulse 84bpm. Straight leg raising was limited to 75 degrees on the left with back pain (no sciatica). Maneuvers of the SI joints provoked pain (including Patrick’s, Faber, Gaenslen, Gillett, Yeomen and shear tests), primarily on the left side. Stability testing revealed 2+ instability in the left SI joint.

She underwent PRPP injections to the left SI joint (Hackett’s B and C points) with 15% dextrose (July 29, 2008 —complicated by increased pain which was treated with traumeel-marcaine injections into the piriformis muscles) and then with sodium morrhuate (Hackett’s A,B,C and L4-5 facets, interspinous ligaments for five sessions on Aug. 19, Oct. 14, Nov. 4, Dec. 9, 2008 , Feb. 10, 2009) with good results and improved stability. NRS was down to 3/10 and she felt 80% improved. Unfortunately, this was all set back when she was rear-ended in a car accident on April 25, 2009 with NRS pain back up to 7/10. Her right SI joint (foot on brake side) was 3+ unstable. Whitmore-Gordons score 41/60. She received approval from the insurer for PRPP and this was administered on July 14, 2009 (Rt. Hackett’s A, B, C points and L4-5 interspinous and facet ligaments) and repeated on the left side Sept. 18, 2009 (in which additional PRPP to the C6-7 facets also helped to resolve the post-MVA neck pain). Her low back pain measures on March 2010 (6 months post-PRPP) were NRS 1.5/10; SFMcGill 2/45; and Oswestry 4/50. She successfully got married, graduated from naturopathic college and returned back to full activity and sport (pool and weight exercises, cross country skiing).

APPENDIX A.

WHITMORE-GORDONS SACROILIAC INSTABILITY TOOL

Please circle ONE number corresponding to the statement in EACH question that BEST describes your low back pain.

<table>
<thead>
<tr>
<th>NEVER</th>
<th>RARELY</th>
<th>SOMETIMES</th>
<th>OCCASIONAL</th>
<th>OFTEN</th>
<th>ALWAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I have pain in my buttlock.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2. My back feels unstable.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3. I get pain (in the low back-buttock area) when I turn in bed.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4. I get pain (same area) when I get out of a low chair.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5. I get pains (same area) when I bend the leg up (such as to put on my sock).</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6. I get pain (same area) when going up or down stairs.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7. I feel clicking/ clunking/ popping (same area) when I move.</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>8. I have had the following injuries to my low back:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ a) motor vehicle accident with foot on brake at time of impact (score as 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ b) fall on the same buttlock or hip (score as 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ c) women: pregnancy-related pelvic pain (score as 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ c) men: unexplained pain (normal urology studies) referred into the testicle (score as5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ d) temporary relief with spinal manipulation or sacroiliac belt (score as 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ e) sports or work-related twisting-lifting injury—e.g., bowling, figure skating, etc. (score as 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>___ f) history of hypermobile “loose” joints (score as 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Score ____/60

Scoring: Preliminary data on consecutive patients suggests a score over 30 has a sensitivity of 85% and specificity close to 100% (with exclusion of fibromyalgia patients) in correlating with an unstable sacroiliac joint that would respond to the PRP prolotherapy treatment.43 (This is to be further studied with multivariate logistic stepwise regression analysis on a larger number of patients.)
Conclusion
These case studies suggest a role for PRP prolotherapy in the management of chronic low back pain—particularly in those with sacroiliac joint pain and instability. Such cases studies and the newly-described screening tool need to be validated with more research, including double-blind randomized controlled trials.

Acknowledgements
Special thanks to the multidisciplinary team at the Canadian Centre for Integrative Medicine: Scott Whitmore, BScPT, FCAMT, Gordon Lawson, MSc, DC, Mark Tsai, MScPT, FCAMT, Thomas Hein, BScPT, FCAMT, Rob McDonald, BSc, RMT DipOsteo; Kevin Ho, RN, DC; Leigh Arsenault, BSc, ND; Melanie Etel, RMA; and Rebecca Chau, RNA.

Gordon D. Ko, MD, CCFP(EM), FRCP(C), FABPMR, FABPM, is Medical Director, Physiatry Interventional Pain Clinics at Sunnybrook Health Sciences Centre, University of Toronto and the Canadian Centre for Integrative Medicine (CCIM, Markham). He is Associate Professor, Rutherford University and Lecturer, Department of Medicine, University of Toronto. His expertise integrates neuropathic pain medications, functional medicine (including bio-identical hormone therapy) with EMG-guided Botox, Xeomin and ultrasound-guided viscosupplements/Platelet Rich Plasma prolotherapy. In CCIM, he leads a multidisciplinary team including specialized physiotherapists, chiropractors, osteopaths, psychotherapists and naturopathic doctors. He is author of an upcoming book “Pain-Free Healthy Aging: Fibromyalgia—Moving from Pain to Optimal Function” which will be available later this year on his website, www.DrKoPRP.com.

References
